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In this work we analyze the stochastic dynamics of the Kauffman model evolv-
ing under the influence of noise. By considering the average crossing time
between two distinct trajectories, we show that different Kauffman models
exhibit a similar kind of behavior, even when the structure of their basins of
attraction is quite different. This can be considered as a robust property of these
models. We present numerical results for the full range of noise level and obtain
approximate analytic expressions for the above crossing time as a function of
the noise in the limit cases of small and large noise levels.
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1. INTRODUCTION

The Kauffman model (or N-K model) describes the dynamics of a network
of N Boolean spins, each controlled by K other spins through a binary
function. It was first proposed by S. A. Kauffman in 1969 (1) as a model for
cell differentiation and genetic networks. Since then, its application has
been extended to many other fields in physics, biology, computational and
social sciences. During the past few decades, most of the work done on
Kauffman models has been dedicated to the study of the configuration
space structure, the length and number of cycles, the size of basins of
attraction, and the phase transition between ordered and disordered phases
(for references, see ref. 2). These properties are obtained by considering the
deterministic dynamics of the system, which is well known by now.
However, those studies have shown that some of the generic properties of
the Kauffman model are far from being robust. The non-robustness of the



deterministic dynamics is reflected, for example, in the fact that by slightly
changing a given initial configuration of spins, the system may ‘‘jump’’
from one basin of attraction to a very different one. On the other hand,
due to the exponential growth of the state space with N, it is often neces-
sary to thoroughly probe the state space in order to determine a generic
property of the system, such as the mean number of different basins of
attraction or the mean cycle length. Actually, it has recently been shown
that a systematic bias due to an under-sampling of the state space can be
present in some of the results reported in the literature during the last 30
years. (3) Therefore it is valuable to find a method which reveals the robust
properties of the Kauffman model.
Real networks are always subjected to external fluctuations. Conse-

quently, the relevant properties characterizing the network should exhibit
a certain degree of robustness to external perturbations. In 1989, both
Miranda et al. (4) and Golinelli et al. (5) analyzed the stochastic dynamics
of the Kauffman model in the case in which an external noisy signal is
present. In this work we extend the study of the stochastic dynamics of the
Kauffman network with noise, by performing more accurate numerical
simulations as well as analytic calculations. We focus our attention on the
time it takes for two trajectories, starting out from different initial con-
ditions, to cross. We consider two cases. First the situation in which each
one of the N spins is determined by K other spins chosen randomly
from everywhere in the system (the Kauffman net). The second case is a
d-dimensional lattice in which each spin is preferentially coupled to its
immediate neighbors. As we will see, both models exhibit qualitatively
similar behavior.
In Section 2, we introduce the Kauffman model with deterministic and

stochastic dynamics. In Section 3 we describe our numerical results for
both Kauffman nets and lattices. In Section 4, we study closely the behav-
ior of these models in the limits of small and large noise. We summarize
this work in Section 5 with a brief discussion of the results.

2. THE KAUFFMAN MODEL

2.1. Deterministic Dynamics

A Kauffman model consists of N Boolean spins {S1, S2,..., SN} with Si
being either zero or one. The value of each spin Si at time t+1 is deter-
mined by the values of K other spins Si1 , Si2 ,..., SiK , which are called the
controlling elements for spin Si. (The number K is called the connectivity of
the system.) Once the connections in the system are established, each spin
Si is assigned with a Boolean function fi of its K controlling elements.
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A realization of the Kauffman model consists of the set of connections and
Boolean functions assigned to every spin. The dynamics of the network is
then given by

Si(t+1)=fi(Si1 (t), Si2 (t),..., SiK (t)) for i=1,..., N. (1)

For convenience, we will denote by St the state of the system at time t:

St={S1(t), S2(t),..., SN(t)}.

In different Kauffman models, the assignments of the K controlling spins
Si1 , Si2 ,..., SiK of each spin Si and the dynamic rules fi, are different. In
Kauffman nets, the controlling elements of Si are assigned randomly,
whereas in a Kauffman lattice they are chosen only among its nearest
neighbors. The dynamic rules fi are chosen randomly in such a way that its
two possible outcomes, 0 and 1, occur with probability r and 1−r respec-
tively. If the realization of the network is time-independent, the network is
called quenched, while if either the set of connections or the set of Boolean
functions fi are re-assigned at every time step, the network is termed
annealed.
Annealed models are more convenient for theoretical studies than

quenched models. For example, by using the annealed approximation it has
been shown analytically that Kauffman nets exhibit three different phases:
frozen, critical and chaotic, depending upon the values of the parameters
K and r. (6) The critical value of the connectivity is given by Kc=
[2r(1−r)]−1. For K <Kc the system is in the frozen phase, whereas if
K >Kc it is in the chaotic phase. Throughout this work we will use
r=1/2, for which Kc=2.
But for most real cases (neural networks, genetic networks, etc.),

quenched models will be more appropriate since in real networks neither
the connections nor the interactions between the elements change randomly
at every moment. However, it has been shown that in the limit NQ.,
both the quenched and the annealed Kauffman nets are exactly equivalent
with respect to the evolution of the overlap between different configura-
tions, although not with respect to the configurations themselves. (7–9)

In this paper, our main focus is on quenched Kauffman nets and lattices.
Due to the finite size of the system, there are a finite number of pos-

sible configurations, to wit W=2N. Therefore, starting out with an initial
configuration, the system will eventually fall into a previously visited state,
after which the same sequence of states repeatedly occurs again. The state
space breaks up into a multitude of cycles (or attractors). The totality of
points which end up in the same attractor represents its basin of attraction.
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2.2. Stochastic Dynamics

There are different ways of introducing noise into Kauffman models
and they reveal different features of the configuration space of the model.
Following Miranda and Parga, (4) we introduced noise in the following way:

Si(t+1)=˛
fi(Si1 (t), Si2 (t),..., SiK (t)) with probability 1−r,
1−fi(Si1 (t), Si2 (t),..., SiK (t)) with probability r.

(2)

In this way, every spin Si has a probability r of violating the deterministic
rule (1). We will say that an n-spin flip event has occurred at a particular
time step, if n spins violated the deterministic rule in this time step. Notice
that this stochastic dynamic rule has a symmetry about the point r=0.5.
For r > 0.5, if we make a substitution fi Q 1−fi, the rule becomes identi-
cal with the case of 1−r. Since the Boolean functions fi are assigned ran-
domly, fi and 1−fi are equally likely to appear in a particular realization
of the model. After averaging over different realizations, the cases with
probabilities r and 1−r are indeed identical. Due to this symmetry in the
stochastic dynamical rule (2), we only need to consider the case r ¥ [0, 0.5].
Note that for the particular value r=0.5, Si(t+1) is equally likely to be
zero or one independently of the value of fi.
In the presence of noise, the concept of ‘‘attractor’’ does not hold

any more, since as the system evolves, there is a non-zero probability of
‘‘jumping’’ to a different attractor, and consequently every point in the
state space can be reached from any initial condition. In this sense, the
‘‘boundaries’’ between different attractors become more diffuse as the level
of noise increases. (10) However, we shall argue that the system has a sort of
effective attractor even in the presence of noise, specifically when r is large.
One of the interesting things to study is the time it takes for two

trajectories to cross. Suppose that we start with two different initial con-
figurations, S0 and S̃0, and let them evolve according to (2), noting all the
configurations produced:

S0 Q S1 Q S2 Q · · · Q Sy

S̃0 Q S̃1 Q S̃2 Q · · · Q S̃y

The crossing time y is then defined as the time for which either one of the
trajectories coincides for the first time with a configuration previously
visited by the other trajectory. For example, when S̃y is equal to any of the
configurations S0, S1, S2,..., Sy. Two important cases have to be distin-
guished, when S0 and S̃0 belong to the same basin of attraction, and when
they belong to different basins of attraction. For those cases we will denote
the crossing time by ys and yd, respectively.

970 Qu et al.



Miranda and Parga examined the behavior of the system by consid-
ering only the attractors with largest and next-largest basins of attraction.
They then showed that for small values of r, the behavior of ys and yd are
very different. At r=0, two trajectories from the same basin will cross in
a time comparable with the sum of two times: first, the transient time
required to enter the attractor, and second, the length of the attractor itself.
Conversely, two trajectories starting out from different basins will never
cross. On the other hand, they found that for sufficiently large values of r,
the crossing time became independent of the starting point. It did not
matter where the two trajectories start, the two basins merge into a sort of
effective attractor and the trajectory bounces around within that subset of
the system-states. For these larger values of r, the observed effective basin
size increased with r. From this, they drew the conclusion that the disap-
pearance of basins of attraction with the increase of r is a sort of hierar-
chical process in the sense that in a finite period of time, the portion of the
whole state space explored by a trajectory starting out from a given basin
of attraction increases with r. Complete randomness is achieved at r=0.5,
where the trajectory explores the entire state space.
As we will see, our simulation will show the same general behavior as

described by Miranda and Parga. But we shall explore the behavior in
more detail, showing the crossing time for the whole range of values of r
and K.

3. NUMERICAL RESULTS

Kauffman nets and Kauffman lattices differ in the structure of their
basins of attraction. One would expect this difference to be reflected in the
response of these models to the influence of noise. For random realizations
of the coupling functions fi, what determines the basin structure is the
connectivity K. Therefore, we will first analyze separately the cases with
large K (chaotic phase) and small K (ordered phase).
We will partially follow Miranda and Parga’s approach in that we

compute the average crossing time ys by using two initial configurations,
S0 and S̃0, in the largest basin of attraction. For the average crossing time
yd, we pick one starting configuration in the largest basin and the other in
the next largest one. The reasons to choose only the two largest basins of
attraction will be clear in what follows.

3.1. Kauffman Models with Large K

We want first to characterize the structure of the basins of attraction.
One way of doing it is by computing the distribution of basin-sizes W(n),

Kauffman Model with Noise 971



0 1 2 3 4 5 6 7 8
(b)

0

0.2

0.4

0.6

0.8

W(n)

0 1 2 3 4 5 6 7 8
(a)

0

0.2

0.4

0.6

0.8

W(n)

n

n

Fig. 1. Distribution W(n) of basin-sizes for: (a) the one-dimensional Kauffman lattice and
(b) the Kauffman net, both with N=20 and K=5. For the Kauffman net, the connections
between spins are chosen randomly, whereas for the lattice every spin is connected to itself
and to its 4 nearest neighbors (periodic boundary conditions were used). The number n in the
horizontal axis corresponds to the nth largest basin in the model.

which is the fraction of the state space W occupied by the nth largest basin
of attraction. In Fig. 1 we show W(n) for a Kauffman net and a 1-dimen-
sional Kauffman lattice, both with N=20 and K=5. It can be seen from
this figure that both models exhibit a very similar structure in their basins
of attraction in the sense that the basin sizes are similar. It is worth men-
tioning that in other aspects, like orbit length or transient time,2 the basins

2 The transient time is the time it takes before a trajectory enters the stable cycle.

of attraction can still be very different in both models.
From Fig. 1 it also can be seen that the largest and next largest basins

occupy more that 90% of the whole state space. Therefore, to a good
approximation it can be assumed that the dynamics takes place mainly in
these two largest basins.
Figure 2 shows the average crossing times ys and yd as functions of r

for the Kauffman net and the 1-dimensional lattice both with N=20 and
K=5 (chaotic phase). Notice that these two kinds of N-K models exhibit
very similar behavior under the influence of noise.

3.2. Kauffman Models with Small K

The ordered phase is characterized by K=1 and K=2. In this section
we will present the results for the minimum value of K, namely, K=1.
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Fig. 2. Average crossing time y for different Kauffman models with N=20 and connectivity
K=5 (chaotic phase) as a function of (a) the noise intensity r and (b) the inverse of the noise
intensity. The symbols are as follows. 1-dimensional Kauffman lattice: (i) yd and (n) ys.
Kauffman net: (+) yd and (f) ys. Each point is the average over 4000 realizations of the model.
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Fig. 3. Distribution W(n) of basin-sizes for: (a) the one-dimensional Kauffman lattice and
(b) the Kauffman net, both with N=20 and K=1 (frozen phase). The number n in the
horizontal axis has the same meaning as in Fig. 1.
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In Fig. 3 we show W(n) for a Kauffman net and a 1-dimensional Kauff-
man lattice, both with N=20 and K=1. The connections in the Kauffman
net were, as usual, chosen randomly, whereas in the 1-dimensional lattice
the node Si was connected either to Si−1 or to Si+1 with equal probability
(we use periodic boundary conditions).
From Fig. 3 it is apparent that in this case, the basin structures of the

Kauffman net and the Kauffman lattice are less similar than in the chaotic
phase. For the lattice, the two largest basins of attraction no longer occupy
more than 90% of the whole state space, whereas in the Kauffman net they
still do. However, the response to the influence of noise is mostly the same
in both models, as can be seen from Fig. 4 where the crossing times ys and
yd are plotted as functions of the noise intensity r.

3.3. Robust Behavior of the Crossing Time

Figures 2 and 4 show that the behavior of the different Kauffman
models under the influence of noise have the following general characteristics,
both in the frozen and in the chaotic phases:
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Fig. 4. Average crossing time y for different Kauffman models with N=20 and connectivity
K=1 (frozen phase) as a function of (a) the noise intensity r and (b) the inverse of the noise
intensity. The symbols are as follows. 1-dimensional Kauffman lattice: (i) yd and (n) ys.
Kauffman net: (+) yd and (f) ys. Each point is the average over 4000 realizations of the
model.
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• For small r, yd decreases as 1/r while ys is nearly constant.

• For large r, both yd and ys increase with r and become equal at
r=0.5.

• For intermediate values of r, yd has a minimum when ys % yd.

Let us analyze separately each one of the above characteristics.
In the limit rQ 0, ys approaches a finite value ys(0), the mean crossing

time for two trajectories in the largest basin of attraction in the absence of
noise. This crossing time is roughly one half the average cycle length, plus
one half the average transient time. The transient time and the cycle length
are of the same order of magnitude, therefore ys(0) is expected to be
approximately equal to the mean cycle length OLP of the largest basin of
attraction (see Fig. 5a).
On the other hand, yd diverges as rQ 0. The numerical data (see

Figs. 2b and 4b) suggest that in this limit, yd has the form

yd %
a(K, N)
r
+b(K, N), rQ 0. (3)
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Fig. 5. (a) Plot of the mean cycle length OLP as a function of ys(0) for a Kauffman net with
N=12. Each point corresponds to a different value of K, starting with K=1 for the first
point in the lower left corner of the graph and ending with K=12 for the last point in the
upper right corner. The dashed line is the best linear fit to the numerical data (circles).
(b) Same type of graph as before but now showing the dependence of b(K, N) on ys(0).
The slopes of the dashed lines are (a) ’ 0.96 and (b) ’ 0.90, which shows that b(K, N) %
ys(0) % OLP.
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The above divergence is due to the fact that, in the absence of noise, there
is a zero probability for a trajectory to jump between different attractors.
Under the deterministic dynamics, every trajectory will remain within its
own basin of attraction for ever. In the next section we will see that the 1/r
behavior of yd is a consequence of the fact that the dynamics is governed by
one-spin flip events when r is small. For large values of K, the largest basin
occupies almost the whole state space. Under these circumstances, every
time a one-spin flip occurs, the trajectory in the next largest basin will have
a finite probability of diverging very substantially from the path it would
have followed in the absence of noise. That divergence will usually force
the trajectory into the largest basin. In fact, for a fraction of order one of
the noise events in the smaller basin, the noise will flip the trajectory into
the largest one. Once the two trajectories are in the largest basin, they have
a lifetime b(K, N) before they cross. This lifetime is expected to be of order
one of ys(0), the typical length of the largest basin of attraction. The above
can actually be seen in Fig. 5, from which it is apparent that for large K,
b(K, N) % ys(0) % OLP.
In the opposite limit rQ 0.5, the crossing times ys and yd become

equal, which means that for high levels of noise, the barriers between dif-
ferent attractors become small. When r reaches its maximum value 0.5,
all barriers vanish. In this case, both trajectories randomly jump from one
state to another throughout the state space, and both ys and yd become
equal to the time it takes for two random walks to cross. As derived in
Section 4.2, this crossing time is the solution to the ‘‘birthday problem,’’
i.e.,

ys=yd 3 2N/2 (4)

In this way we have obtained a qualitative description of the limiting
cases of Figs. 2 and 4. The one qualitative feature left to describe is the
crossover from the small r to the large r behavior. As one can see from
these figures, the crossover occurs when the two times ys and yd become
roughly equal. This in turn happens when

r ’ a(K, N)/ys(0) ’ 1/N (5)

Thus, the minimum in yd occurring between the two previous limit values
of r, can be interpreted as the result of a sort of ‘‘competition’’ between the
randomness in the system (coming from the presence of noise), and the
barriers separating the attractors (which come from the deterministic
dynamics of the system).
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3.4. A Kauffman Model with Equal Basin-Sizes

Finally, we would like to mention that the above results are also true
for Kauffman models in which all the basins of attraction have the same
weight. As an example, consider a Kauffman lattice with N=20 and K=1
in which every spin is connected to itself. For K=1 there are only four
Boolean functions fi(S): tautology fi(S)=1, contradiction fi(S)=0,
identity fi(S)=S and negation fi(S)=1−S. Imagine then the very speci-
fic realization in which two of the coupling functions are identity, two are
negation and all the others are either tautology or contradiction. By simple
analysis, we know that for this specific model, the whole state space is
composed of eight basins of attraction with equal size. Figure 6 shows the
crossing time y as a function of r for this particular model. Since in this
case all the basins of attraction have the same size, the two initial condi-
tions needed to compute y were chosen randomly among the whole state
space. Again, the y ’ 1/r behavior for small r and the y3 2N/2 behavior for
rQ 0.5 are obtained. Of course we can construct many other models by
choosing different coupling functions fi for this K=1 self-correlated case.
All the Kauffman models we have explored have shown this kind of
behavior under noise.
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Fig. 6. Average crossing time y (q) for a Kauffman lattice with N=20 and connectivity
K=1 as a function of (a) the noise intensity r and (b) the inverse of the noise intensity. For
this model, every spin is correlated to itself and we choose the Boolean functions in such a
way that the whole state space is composed of 8 basins of attraction with equal size. Each
point is the average over 10000 realizations of the model.
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4. THEORETICAL ANALYSIS

4.1. Small r Limit

In this region, the main characteristic of average crossing time is that
yd ’ 1/r. The reason for this dependence is that the stochastic dynamics is
dominated by one-spin flip events, in the following sense. The probability
of a one-spin flip event ( ’ r) is much larger than the probability of a two-
spin flip event ( ’ r2). If the probability to jump to a different basin of
attraction in a one-spin flip event is significantly different from zero, then
the dynamics will be dominated only by this kind of events. Even if it was
necessary to flip two spins to jump from one basin to another, this process
can be decomposed into two one-spin flip events occurring sequentially,
instead of being carried out at once in one two-spin flip event.
As we have shown in Section 3, the 1/r behavior is present in a wide

variety of Kauffman models. This in turn, implies that the one-spin flip
events dominate the dynamics for small values of the noise. In this subsec-
tion, our goal is to derive an expression for the coefficient a(K, N) for
Kauffman nets. To do so, we will make the assumption that the dynamics
takes place only in the two largest basins of attraction. Although the
yd ’ 1/r behavior is generally true, as we have found, the preceding
assumption is not true for all Kauffman models, especially for those with
small values of K, but as we show below, it becomes more valid as K
increases.
To start the calculation of a(K, N), let P1, 2 be the probability for

jumping from the largest basin to the next largest basin with a one-spin flip
event and P2, 1 be a similar probability but jumping in the opposite direc-
tion.3 Let us also define Q1 and Q2 as the probabilities of remaining in the

3 By definition, the ratio of P1, 2 and P2, 1 is strictly the inverse of the ratio of the size of the
largest basin to the next largest one in one realization.

largest basin and in the next largest one, respectively, after one-spin flip
event. Simulations show that for Kauffman nets these probabilities have a
slight dependence on N but a very strong dependence on K. The result is
that P1, 2+Q1 % P2, 1+Q2 %M, where M is approximately constant for all
values of K andM> 0.92 (see Fig. 7).
However, the dynamics depends not only on the total sumM but also

on the particular values of P1, 2, Q1, P2, 1 and Q2. For small values of K,
both P1, 2 and P2, 1 are very small and comparable with (1−M). So, even
thoughM is large, the interaction between the two largest basins is weak in
the sense that the probability of jumping into smaller basins is of the same
order as P1, 2 and P2, 1. Therefore, for small values of K the smaller basins
play a significant role in the dynamics of the system. The above can be seen
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Fig. 7. Plot of the probabilities P1, 2 (q), P2, 1 (g), Q1 (i) and Q2 (× ) as functions of K, for
a Kauffman net with N=12. Also shown is M as a function of K, obtained as M=P1, 2+Q1
(f), and as M=P2, 1+Q2 (n). Note that even though M is a constant for all values of K, the
probabilities P1, 2 and P2, 1 are rather small for small values of K.

in Fig. 7, in which the probabilities P1, 2, P2, 1, Q1, Q2, and the sum M are
plotted as functions of K. From this figure it is apparent that the two
largest basins of attraction are the dominant ones for large values of K (say
K \ 5). The closeness of M to 1 means that a trajectory will seldom jump
into a basin other than the two largest ones with only one-spin flip event.
In view of this result, in some of the arguments below we will assume that
K is sufficiently large so that the dynamics takes place only in the two
largest basins of attraction.
With the information about these probabilities, we can give an

approximate calculation of yd as a function of r for the case in which K is
large. We know that every spin violates the deterministic rule (1) with
probability r. Therefore, the probability of a one-spin flip event is Nr and
consequently the expected time for this event to occur is T=1/(Nr). This
is true for all configurations. For sufficiently small values of r, this expec-
tation time is much longer than the average crossing time for two configu-
rations in the same basin. Hence, once two configurations jump into the
same basin, their trajectories meet before the next spin-flip event becomes
possible.
There are two cases in which the two trajectories meet after the

occurrence of a one-spin flip event at time T: the configuration in the
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largest basin remains in it while the configuration in the next largest basin
jumps into the largest one, or vice versa. The above occurs with probability
(Q1P2, 1+Q2P1, 2). Similarly we get the probability for the crossing of the
two trajectories after one-spin flip events at 2T, 3T, etc. The average value
of yd is then:

yd % T· (Q1P2, 1+Q2P1, 2)+2T· (Q1Q2+P1, 2P2, 1) · (Q1P2, 1+Q2P1, 2)+· · ·

= C
.

m=1
m·T · (Q1P2, 1+Q2P1, 2) · (Q1Q2+P1, 2P2, 1)m−1

=
1
Nr
·
Q1P2, 1+Q2P1, 2

(1−Q1Q2−P1, 2P2, 1)2

=
a(K, N)
r

(6)

where a(K, N) is explicitly given by

a(K, N)=
1
N

Q1P2, 1+Q2P1, 2
(1−Q1Q2−P1, 2P2, 1)2

(7)

In the above derivation, which is true for the case in which K is large, we
have ignored the time b(K, N) it takes for two trajectories to cross after
they have jumped into the same basin. Figure 8 shows the coefficient
a(K, N) obtained from Eq. (7) and from simulation, for different values of
K in a Kauffman net with N=12. It can be seen that the simulation and
the theoretical result agree very well for K \ 5. It is worth emphasizing that
for small values of K and other Kauffman models where the two largest
basins don’t have such dominance, the effect of other basins besides the
largest and next largest ones has to be considered to perform an accurate
derivation for the coefficient a(K, N).

4.2. Large r Limit

When r acquires its maximum value 0.5, the barriers between different
attractors vanish and the dynamics transforms into a random mapping of
the state space into itself. (11, 12) In this limit, the crossing times ys and yd
become indistinguishable and we will refer to both of them simply as y. To
understand the limit rQ 0.5 we will first give a simple ‘‘birthday-problem’’
argument to obtain the order of magnitude of y. Then we will proceed to a
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Fig. 8. The coefficient a(K, N) in Eq. (3) for different values of K for a Kauffman net with
N=12. (× ) is the result obtained from simulations by sampling the whole state space. (i) is
the result obtained from the theoretical result Eq. (7).

more elaborate analysis to obtain an approximate expression for y as a
function of r, valid for r close to 0.5.
Imagine two walkers moving at random through a space of dimension

W=2N. They go through a number of steps n=1, 2, 3,... . As each step
is completed, they have a total number of chances Cn on landing on some
place previously covered by the other walker. At the first step we could
have the two walkers at identical positions. Thus, C1=1. At the second
step, C2=3+C1 since each can land on the original position of the other
or they can both land at precisely the same place. After n steps
Cn=Cn−1+2n+1=n2. For large W and small n, the probability of having
collided with the path is then of order pn % Cn/W. The average time for
crossing is then roughly given by the n-value for which pn becomes of order
unity, so that n2 is of order W or n=O(W1/2). Therefore, the crossing time y
satisfies y3 W1/2.
To derive a more precise functional relation between y and r we have

to compute the probability pc(t) for two trajectories {S0, S1,..., Sy} and
{S̃0, S̃1,..., S̃y} to cross at time y. In order to do that, we have to have first
the probability p for two configurations St and S̃t̃ to be the same (note
that t and t̃ might be different). Let Si(t−1) be in St−1 and S̃i(t̃−1) be the
corresponding spin in S̃t̃ −1. Since these spins are in the same position (each
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in its respective configuration), the deterministic rule fi they obey is the
same. Notice that the dynamical equation (2) can be written as

Si(t+1)=˛
fi with probability 1−2r,
evolve randomly with probability 2r.

(8)

From this expression it follows that the probability for Si(t−1) and
S̃i(t̃−1) to evolve according to the deterministic rule fi is (1−2r)2. Let us
denote by p1 the probability that Si(t)=S̃i(t̃ ) when both spins are updated
according to the deterministic rule fi. To calculate p1 we follow the
annealed approximation introduced by Derrida and Pomeau, (6) which leads
us to the following two possibilities:

(1) The K inputs of Si(t−1) and S̃i(t̃−1) are the same, which occurs
with probability 1/2K. When this happens, Si(t)=S̃i(t̃ ) with probability 1.

(2) At least one of the inputs is different, which occurs with proba-
bility (1−1/2K). In this case, if the evolution rules fi are assigned in a
sufficiently random way, there is a probability of 1/2 that Si(t)=S̃i(t̃ ).

From the above it follows that

p1=(1−2r)2 5
1
2K
+11− 1

2K
2 · 1
2
6

On the other hand, the probability p2 that Si(t)=S̃i(t̃ ) when the evolution
rule fi is violated in one or both of the configurations, is simply given by

p2=[1−(1−2r)2] ·
1
2

Combining the values of p1 and p2 given above, the probability p for both
configurations St and S̃t̃ to be equal is

p=3(1−2r)2 5 1
2K
+11− 1

2K
2 · 1
2
6+[1−(1−2r)2] · 1

2
4N

=
1
2N
·31+ 1

2K
· (1−2r)24

N

(9)

If q(t) is the probability that the two trajectories have not yet crossed at
time t, then pc(t), the probability for the two trajectories to cross at time t,
is given by

pc(t)=q(t−1)−q(t) (10)
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The two trajectories are still separated at time t if none of the configura-
tions {S0, S1,..., St} is equal to any of the configurations {S̃0, S̃1,..., S̃t}.
The probability for this to happen is

q(t)=(1−p) (t+1)
2

Substituting this value of q(t) into equation (10) we get

pc(t)=(1−p) t
2
−(1−p) (t+1)

2
(11)

Therefore, the average crossing time y=;.

t=1 t · pc(t) is given by

y=C
+.

t=1
t · [(1−p) t

2
−(1−p) (t+1)

2
] (12)

% F
+.

0
−t
d(1−p) t

2

dt
dt

=
1
2
= p

− ln(1−p)

Expanding the logarithm in the above equation around p=0, and retain-
ing only the terms up to the the first order, we finally get

y %
`p

2
5 2
1+ 1

2K
· (1−2r)2
6N/2 (13)

It can be seen that Eq. (13) is consistent with the ‘‘birthday-problem’’
argument for the case r=0.5. When r is not exactly 0.5, we do not have a
simple birthday problem because the coupling between different elements,
and consequently the functions fi, still play a role in the dynamics.
However, it is clear from the above equation that the problem can be
viewed as a birthday problem with an effective state space Weff=
[ 2
1+(1−2r)2/2K

]N.
Figure 9 compares the theoretical result (13) with the numerical simu-

lation for K=1 and K=5. As can be seen, the analytic result approxi-
mates very well the numerical data in the region of r close to 0.5. In this
region the annealed approximation holds because the noise breaks the cor-
relations between the spins. However, for small values of the noise those
correlations are important and cannot be neglected. We therefore do not
expect agreement between the numerical and theoretical results for small
values of r since in this region the annealed appriximation is not longer
valid.
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Fig. 9. Average crossing time y as a function of r for two Kauffman nets with N=20 and
connectivities (a) K=1 and (b) K=5. In both graphs the dashed curve is the result of the
numerical simulation for yd, whereas the solid line is the plot of the analytic expression (13).

5. CONCLUSIONS

We have considered the effect of external perturbations (noise) in the
dynamics of the Kauffman model. The behavior of both, the Kauffman net
and the Kauffman lattice under the influence of noise is very similar, even
though these models might have a quite different structure in their basins
of attraction. In this sense, the response of the Kauffman models to the
effect of noise can be considered as a very robust property.
In the limit rQ 0, the most important property is the 1/r behavior of

the crossing time yd, which has been always present in the Kauffman
models we have studied so far. This 1/r behavior is a consequence of the
fact that, for small values of the noise, the dynamics is dominated by one-
spin flip events. An approximate equation relating yd and r was obtained
by taking into account the fact that, for large values of the connectivity,
most of the dynamics takes place in the largest and next largest basins of
attraction.
In the second limit rQ 0.5, the barriers between different attractors

disappear and the dynamics transforms into a random mapping of the state
space into itself. As a consequence, ys and yd become equal. In the case in
which r=0.5, the crossing time between the two trajectories can be seen as
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the solution of a ‘‘birthday problem’’ in a space of size W=2N. For other
values of r, but still close to 0.5, the correlations between spins have to be
taken into account, which have the effect of reducing the size of the region
of the state space explored by the dynamics.
Between these two limit cases for the noise, there is a minimum in the

value of yd as a function of r. In a loose sense, this minimum could be
interpreted as the result of a ‘‘competition’’ between the randomness gen-
erated by the noise, which tends to homogenize the state space by dimi-
nishing the barriers across different attractors, and the deterministic
dynamics, which tends to confine two trajectories within the same basin.
To analyze this region it would be necessary to consider multiple-spin flip
events as well as long-time step correlations.
The results and techniques presented in this work could be extended to

other systems acting under the influence of noise in order to provide them
with a robust characterization.
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